

PCMD MicroCT Imaging Core Learning Lunch Series

In Vivo µCT Imaging of Live Rodents + Image Registration

Presenter: Vincent and Wen

Dec. 18, 2023 PCMD MicroCT Imaging Core

Outlines

• Brief introduction of our core facility

- In vivo µCT imaging of rodents
- Image registration software development CTPros
- Q & A

µCT Imaging Core Resources

Model	Location	Scan Size (ØxL;mm)	Voxel Size (µm)	Applications	
µCT 35	Stemmler Hall	37.9 x 120	3.5-72	High resolution <i>ex vivo</i> scans	
μCT 45	Stemmler Hall	50 x 120	3.0-100	High resolution <i>ex vivo</i> scans	
vivaCT 80	Stemmler Hall	80 x 145	10.4-76	High resolution <i>in vivo</i> scans for small animals	
μCT 50	PVAMC/TMRC	50 x 120	0.5-100	Ultra high resolution (sub-micron) <i>ex</i> <i>vivo</i> scans	
vivaCT 75	PVAMC/TMRC	79.9 x 145	21-150	<i>In vivo</i> scans for small animals; <i>Ex vivo</i> scans for large specimens	
XtremeCT II	CTRC	140 x 200	60-82	Clinical scans for peripheral skeleton	

Ex vivo (Specimen) Scanners

- Scanco µCT 35 (Purchased in 2012)
 - Native voxel sizes: 3.5 $\mu m,$ 6 $\mu m,$ 10 $\mu m,$ 15 $\mu m,$ 18.5 μm

Ex vivo (Specimen) Scanners

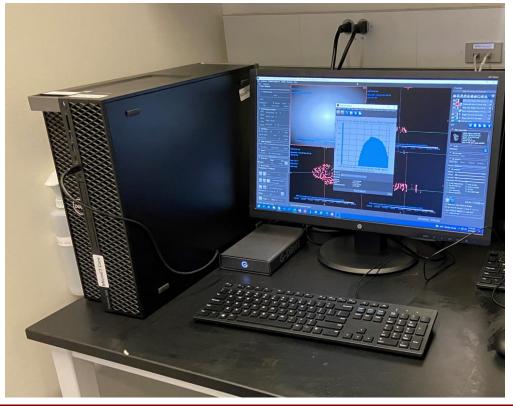
- Scanco µCT 45 (Purchased in 2019)
 - Native voxel sizes: 3 μm, 4.5 μm, 7.4 μm, 10.4 μm, 14.6 μm
 - <u>Carousel system</u> supporting 20 sample holders
 - "Air" filter for scanning low density materials
 - "Copper" filter for scanning specimen with <u>metal implants</u>

In vivo Scanner

- Scanco vivaCT 80 (Purchased in 2018)
 - Voxel sizes: 10.4 μm, 11.6 μm, 13 μm,
 16.1 μm, 20.8 μm, 26 μm
 - Internal heating device to keep animal warm
 - <u>Internal camera</u> to monitor animal's breathing
 - Ex vivo scan for specimen from <u>large</u> <u>animals</u> or human cadaver

MicroCT Analysis PC

- 2 PCs for MicroCT Analysis (315 Stemmler)
 - Windows 10 platform
 - Either remote or onsite access
 - <u>Scanco software</u>



Dragonfly Workstation

- Workstation for Dragonfly software (324 Stemmler)
 - Windows 10 platform
 - PMACS account required (either remote or onsite access)
 - Deep learning assisted analysis
 - Training videos https://www.theobjects.com/dragonfly/tutorials.html

Penn Center for Musculoskeletal Disorders

Outlines

• Brief introduction of our core facility

• In vivo µCT imaging of rodents

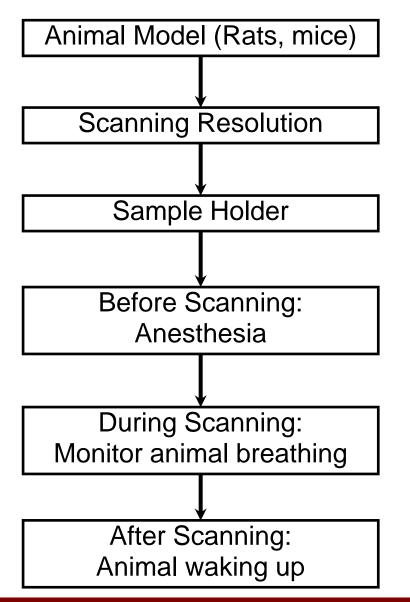
- Image registration software development CTPros
- Q & A

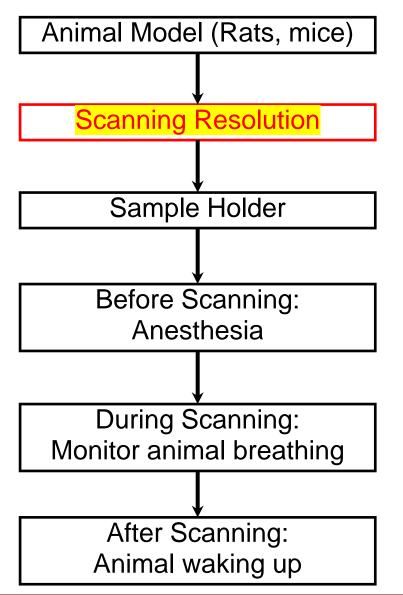
Why in vivo μCT ?

- µCT provides 3D imaging with sufficient spatial resolution for the assessment of rodent bone microarchitecture
- *In vivo* µCT: Longitudinal studies of bone morphology Waarsing+2006 Brouwers+2007, Brouwers+2008, Brouwers+2009, Klinck+2008, Bouxsein+2010, Lan+2013, Boyd+2006, Campbell+2008, Buie+2008, Lambers+2011, Schulte+2011
 - Skeletal responses to various diseases and treatments
 - Bone loss associated with disuse or surgery
 - Increased bone mass due to pharmacologic treatment or mechanical loading
- Input to micro finite element (µFE) models to track the mechanical properties of bone van Rietbergen+1998, Schulte+2011
- Reduction in number of animals Bouxsein+ 2010

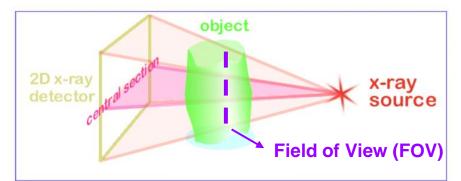
vivaCT 80

- vivaCT 80 (Purchased in 2018)


 Best resolution:
 10.4 µm isotropic voxel size
 - X-Ray Source:
 30 70 kVp
 - Max Scan Size:
 80 x 145 mm (Ø x L)
 - Capacity to scan:
 All tissues on mice
 All tissues on rat
 (body weight < 700g)


In Vivo µCT Imaging

In Vivo µCT Imaging



How to Choose Image Resolution (vivaCT 80)

 Image resolution is determined by FOV and number of projections

vivaCT80 Field of View (mm)	Proj./180°	Best Resolution (µm)
31.9	1500	10.4
35.9	1500	11.6
39.9	1500	13.0
49.8	1500	16.1
63.9	1500	20.8
79.9	1500	26.0

Radiation Dose – VivaCT 80

 Computed Tomography Dose Index (CTDI): Proportional to the integration time (s), current (µA) and number of projections

Energy (KV)	Integration time (ms)	Current (µA)	Field of View (mm)	Proj./180°	CTDI (mGy)	Resolution (µm)
55	300	145	32	1500	<mark>1537</mark>	10.4
55	300	145	40	1500	<mark>998</mark>	13.0
55	300	145	50	1500	615	16.1
55	300	145	64	1500	368	20.8
55	300	145	80	1500	230	26.0

Concerns – Radiation Exposure

- In vivo scan on Wistar rats Klinck+ 2008
 - 8 month old, female rats
 - 12.5 μm isotropic voxel size, 55 kV voltage, 109 μA current, 200 ms integration time, 2000 projections
 - Scanned right tibia at wk0, 2, 4, 6, 8, 12
 - Radiation dose: 502.5 mGy
 - \rightarrow <u>No radiation effect</u>
- In vivo scan on Wistar rats Brouwers+ 2007
 - 30 week old, female rats
 - 15 μm isotropic voxel size, 70 kV voltage, 85 μA current, 350 ms integration time, 2000 projections
 - Scanned right tibia at wk0, 1, 2, 3, 4, 5, 6, 8; left tibia at wk0 and 8
 - Radiation dose: 939 mGy
 - Determined cell radiation damage using a cell viability test
 - \rightarrow No radiation effects on bone microarchitecture and marrow cells

Concerns – Radiation Exposure

- In vivo scan on BL6 mice Laperre+2011
 - 10 weeks old, male mice
 - 9 μm isotropic voxel size
 - In vivo scanned left tibia at wk0, 2, 4; ex vivo scanned on both tibia after sacrifice (wk4)
 - Radiation dose: 776 mGy
 - \rightarrow Negative effects on BV/TV and Tb.N and increased Oc.S/BS
- In vivo scan on BL6 mice Laperre+2011
 - 4 and 16 weeks old, male mice
 - 9 μm and 18 μm isotropic voxel size
 - In vivo scanned left tibia at wk0, 2, 4; ex vivo scanned on both tibia after sacrifice (wk4)
 - Radiation dose: 434 mGy (9 μm) and 166 mGy (18 μm)
- \rightarrow No radiation effect on both trabecular and cortical bone architecture in all mice

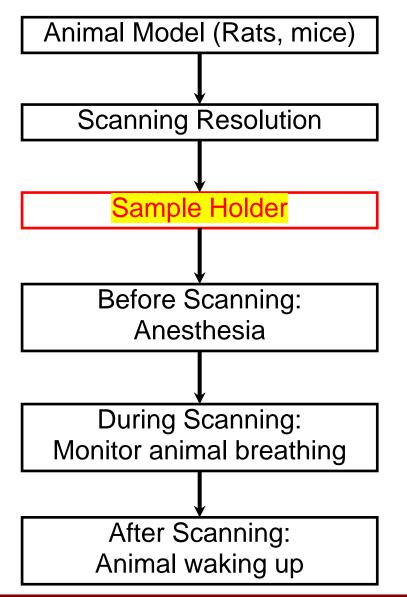
Concerns – Radiation Exposure

- In vivo scan on C3H, BL6, and BAL mice Klinck+ 2008
 - 8-10 weeks old, female mice
 - 10.5 μm isotropic voxel size, 55 kV voltage, 109 μA current, 200 ms integration time, 2000 projections
 - Scanned right tibia at wk0, 1, 2, 3
 - Radiation dose: 712.4 mGy

→ <u>Negative effects on trabecular microarchitecture</u>

- In vivo scan on BL6 mice Zhao+ 2016
 - 12 weeks old, female mice
 - 10.5 μm isotropic voxel size, 55 kV voltage, 109 μA current, 200 ms integration time, 2000 projections
 - In vivo scanned right femur and L4 at wk0, 3, 6; ex vivo scan on both femurs,
 L3 and L4 after sacrifice (wk9)
 - Radiation dose: 639 mGy (femur) and 310 mGy (vertebra)

 \rightarrow <u>No effect on BV/TV and cellular activities; Negative effects on trabecular</u> <u>microarchitecture (~10-20%)</u>

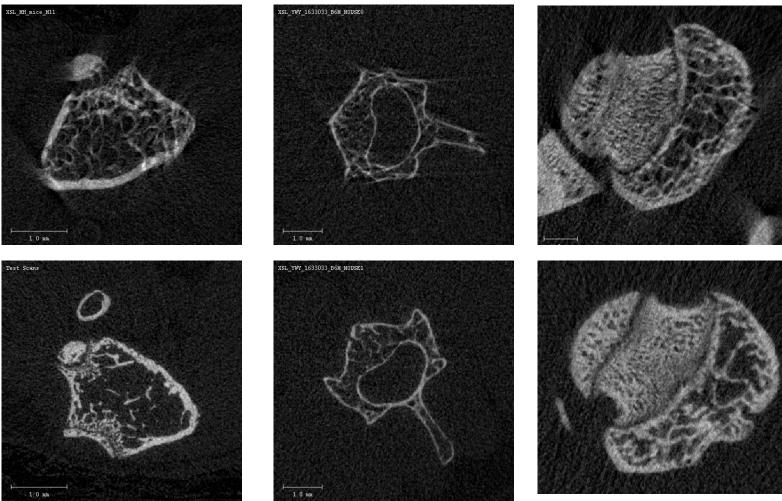

Conclusion: Radiation Exposure

- Minimal impact on <u>rat</u> bone mass and bone microarchitecture
- Compared to rats, <u>mice</u> are more sensitive to radiation exposure
 - High resolution scans (10-15 μm) leading to 10-20%
 deterioration of trabecular bone microarchitecture compared to non-radiated sites
 - *Suggestion* to reduce radiation exposure:
 - Reduction in scan frequency and Increase in interval time between repeated scans
 - Reduction in scan resolution

In Vivo µCT Imaging

Why Need Holder? Movement Artifacts

Movement Artifacts caused by <u>animal breathing</u>

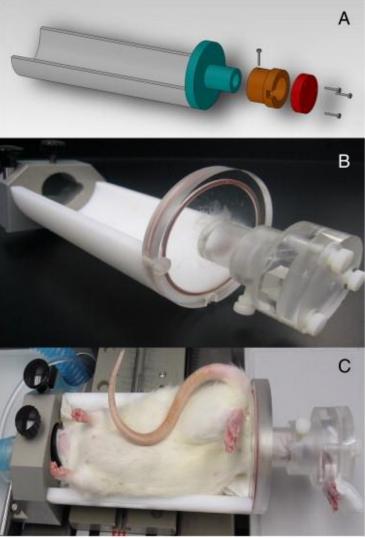

Why Need Holder? Movement Artifacts

L2 Vertebrae

Humerus

• Movement Artifacts due to animal breathing

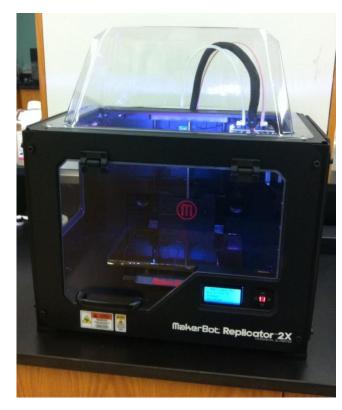
Distal Femur



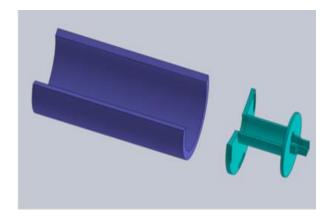
Customized Holders - 3D Printing

 Minimize the movement of the skeletal site of interest

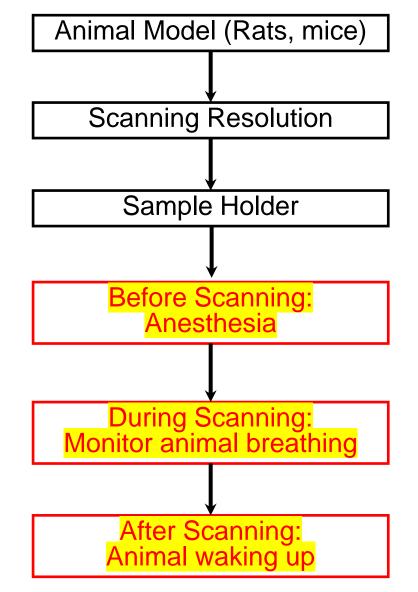
 Minimize the reposition error induced by repeat scans



Rat tibia holder



Customized Holders - 3D Printing



In Vivo µCT Imaging

Before Scanning - Anesthesia

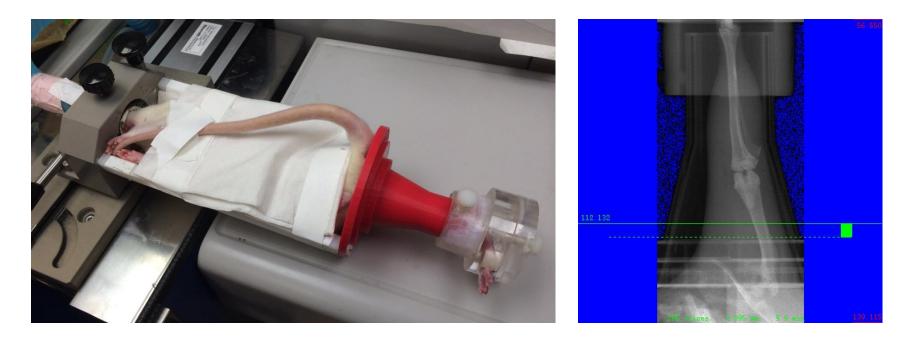
- Non-painful procedures (Penn IACUC Guideline)
 - Isoflurane
 - Mice: 3-4% for induction and 1-3% for maintenance
 - Rats: 3-5% for induction and 1-3% for maintenance

Anesthesia chamber

http://www.upenn.edu/regulatory affairs/Documents/iacuc/guidelines/IACUCGuideline-MouseAndRatAnesthesiaAndAnalgesia.pdf

Before Scanning - Anesthesia

- Advantages of Isoflurane (vs. Ketamine/xylazine)
 - Safer
 - Faster (induction, adjusting depth and recovery)
 - No need for reversal agents



http://www.upenn.edu/regulatoryaffairs/Documents/iacuc/guidelines/IACUCGuideline-MouseAndRatAnesthesiaAndAnalgesia.pdf

During Scanning

- In vivo μCT scan
 - 19 μm isotropic voxel size
 - 2 mm bone segment of femur midshaft and muscle
 - Average scan time: 10 mins

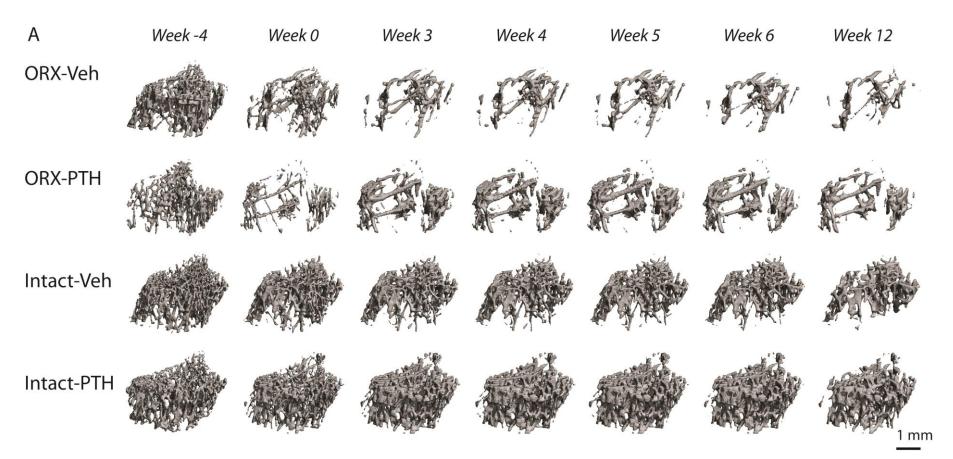
During Scanning

• Monitor animal's breathing

After Scanning

• Waking up the animal: Heating lamp




Precision

- Precision is affected by **reposition** of animals at each follow-up scan
 - Short term precision study (same day, multiple scans)
 - 12.5 µm, Precision: 1-6% in rats Nishiyama+2010
 - 10.5 μ m, Precision: 1-7% in rat tibia Lan+2013
 - 10.5 μm , Precision: 1-8% in BL6 or C3H mice tibia $\ensuremath{\mbox{Nishiyama+2010}}$
 - 10.5 μm, Precision: 4-12% in femur and 6.5-17.6% in L4 of BL6 mice Chang+2016 SB3C
- To minimize the reposition error
 - Customized animal holders for the scan
 - Image registration

16 Weeks longitudinal scans of male rats

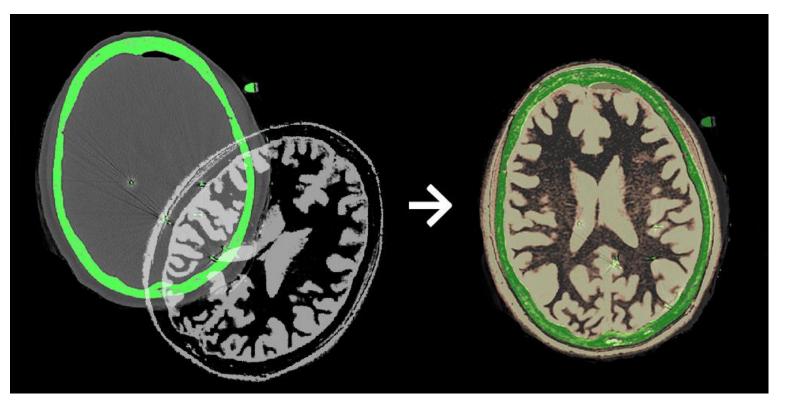
ORX=Orchiectomy surgery; PTH=Parathyroid hormone; Veh=Saline

(Scanned by Vincent)

Outlines

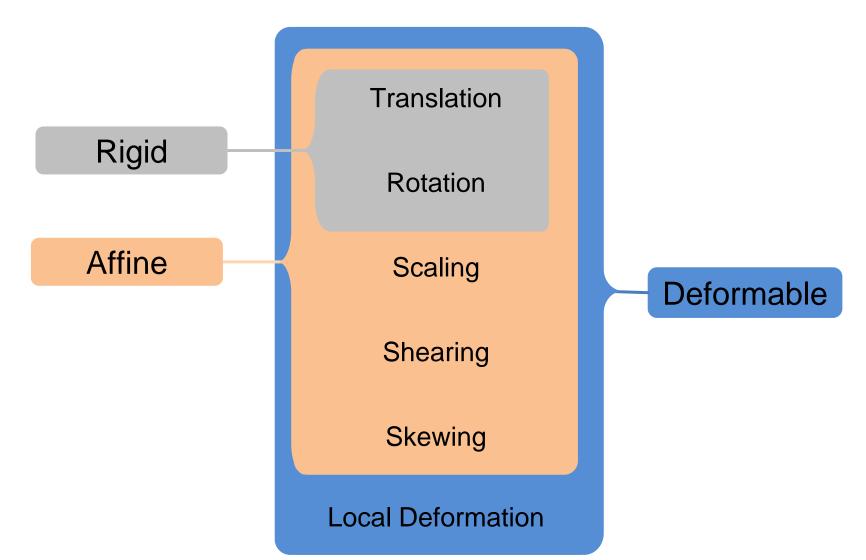
- Brief introduction of our core facility
- In vivo µCT imaging of rodents
- Image registration software development CTPros

Penn Center for Musculoskeletal Disorders

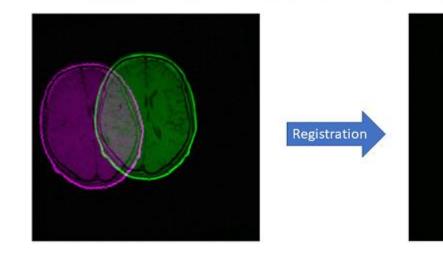

• Q&A

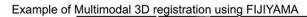
Medical Image Registration

- A process in medical imaging where multiple images from different modalities (X-ray, MRI, *etc*.) or **time points** are aligned
- Enables better understandings of the spatial relationships between structures or temporal changes over time.

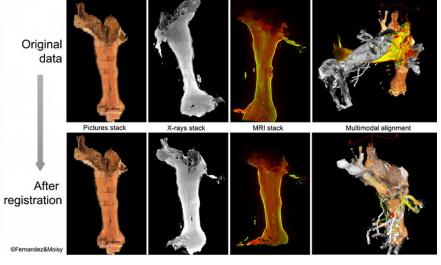


Medical Image Registration




Registration Tool

· Rigid registration - Required when the two images, volumes, or surfaces differ by a global shift and a global rotation



MATLAB

Registration Tool

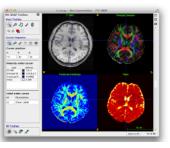
SimpleElastix

Medical Image Registration Library

State-of-the-art medical image registration with a couple of lines of code. Read the paper.

Industry-standard implementation with 900+ citations in the scientific literature.

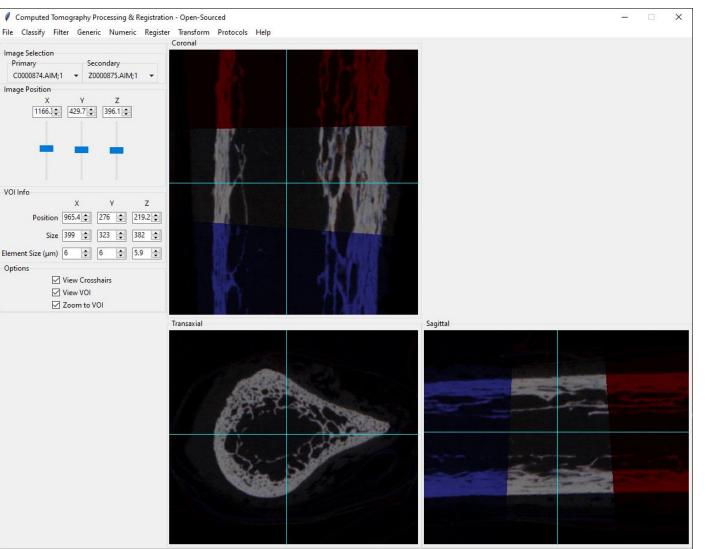
Available in C++, Python, Java, R, Ruby, C#, Lua and Tcl on Linux, Mac and Windows.



HOME	SUPPORT	DOWNLOADS	
PUBLICATIONS	DOCUMENTATION	CREDITS	
SOURCE CODE	VIDEO LIBRARY	LINKS	
SCREENSHOTS		P 4.0.2 has been releas it the <u>what's new in ITK</u>	

ITK-SNAP

ITK-SNAP is a free, open-source, multi-platform software application used to segment structures in 3D and 4D biomedical images. It was originally developed at the University of North Carolina by student teams led by <u>Guido</u> <u>Gerig (NYU Tanden School of Engineering)</u>, who envisioned a tool that would be easy to learn, with a limited feature set centered specifically on the task of image segmentation. Current ITK-SNAP development is led by Paul Yushkevich, Jilei Hao, Alison Pouch, Sadhana Ravikumar and colleagues at the <u>Penn Image Computing and Science Laboratory (PICSL)</u> at the University of Pennsylvania.


ITK-SNAP provides semi-automatic segmentation using active contour methods, as well as manual delineation and image navigation. In addition to these core functions, ITK-SNAP offers many supporting utilities. Some of the core capabilities of ITK-SNAP include:

Computed Tomography: Processing, Registration, Open Sourced

Carlos Osuna

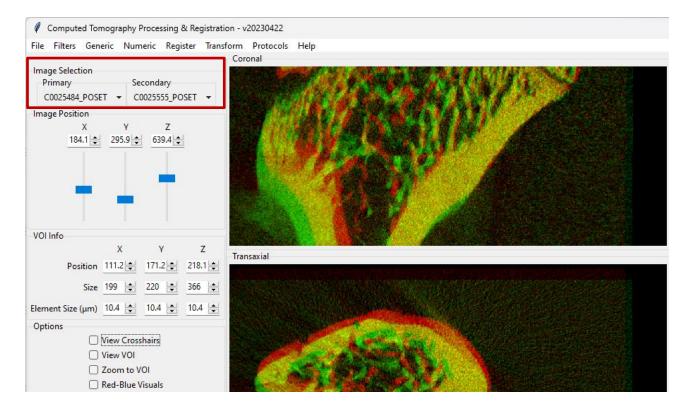
Input and Output

> Image files:

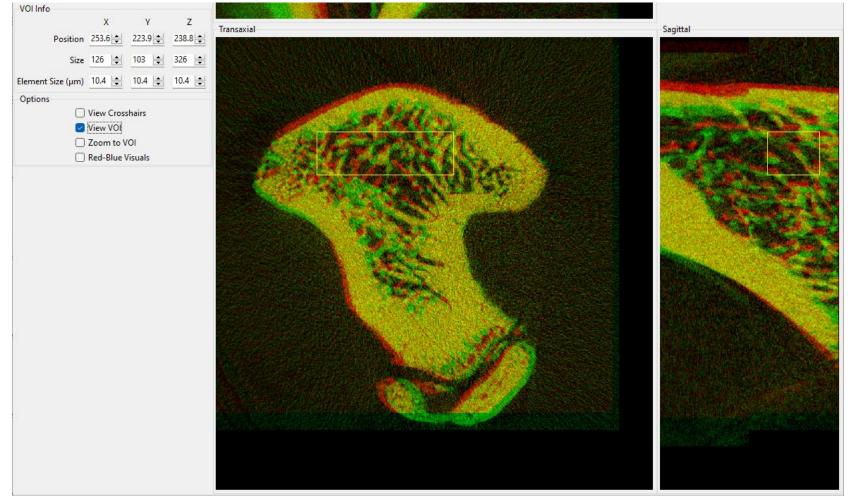
*.aim, *.dcm, *.tif, *.jpg, *.rsq, ...

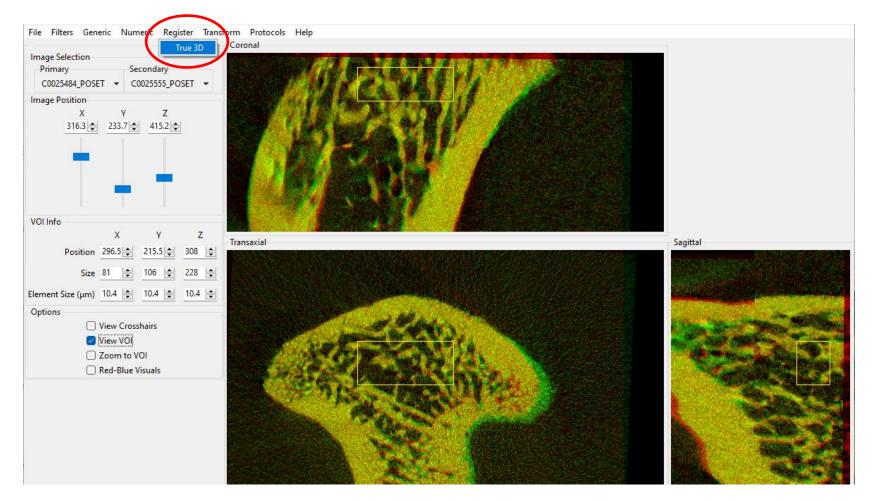
Transformation matrices :

*.tfm (binary), *.tfmtxt

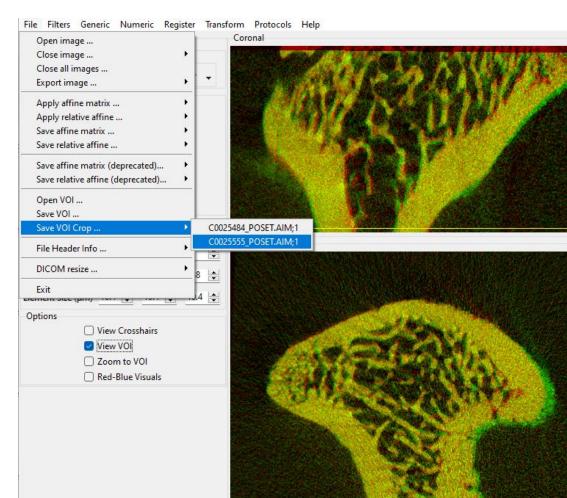


Load images


- Primary image (moving image)
- Secondary image (fixed image)


Manual alignment and VOI selection

Perform (rigid) image registration



> Output transformation matrix and registered moving image

File	Filters	Generic	Numeric	Register	Transform	Protocols	He
0	pen ima	ge		_	Co	ronal	
	lose ima	-					
C	lose all ir	mages					
Ð	oport ima	age			_		Sit
A	pply affii	ne matrix .					
A	pply rela	tive affine					67
Sa	ave affin	e matrix		I		1. A.	H.
Sa	ave relati	ve affine		•	C0025555	_POSET.AIM;	1
Sa	ave affin	e matrix (d	leprecated).		C0025484	_POSET.AIM;	1
			deprecated)			Add.	R.R.
0	pen VOI						10
Sa	ave VOI .					1.45.05	
Sa	ave VOI (Crop			z		
Fi	le Heade	er Info		•	∠ B 🚔 🔤	nsaxial	
D	ICOM re	size		•	3 🐳		
	(it	(LIII)			4 🕂		
Opti	ons						
		🗌 View	Crosshairs				
		View	VOI				
			m to VOI				22
		_	Blue Visual	-			1
		U neu-	onde visual:				123

Future Development

- Future development:
 - Manual contour/segmentation
 - Numerical analysis/evaluation
 - VOI identification / Automatic segmentation
 - Other...

